[Machine learning][1] enables computers to learn from large amounts of data without being explicitly programmed to do so. We can already see how machine learning gives rise to new intelligent applications, from self-driving cars to intelligent assistants on our smartphones. Increasingly, businesses recognize the importance of using machine learning to transform their data assets into business value. However, many companies are unsure how machine learning can be applied to solve problems in an enterprise context. As the world’s most relevant enterprise data is part of SAP’s system and business network, SAP aspires to make all its enterprise solutions intelligent and help customers to leverage their data. [1]: http://www.sap.com/solution/machine-learning.html "EXTERNAL"
Selbststudium
Kurssprache: English

Kursinformationen


Course Summary

Machine learning enables computers to learn from large amounts of data without being explicitly programmed to do so. We can already see how machine learning gives rise to new intelligent applications, from self-driving cars to intelligent assistants on our smartphones.

Increasingly, businesses recognize the importance of using machine learning to transform their data assets into business value. However, many companies are unsure how machine learning can be applied to solve problems in an enterprise context. As the world’s most relevant enterprise data is part of SAP’s system and business network, SAP aspires to make all its enterprise solutions intelligent and help customers to leverage their data.

The objective of this course is to help business decision makers understand the significance of machine learning for enterprise computing. After taking this course, participants should be aware of recent advances in machine learning, have an understanding of the basic concepts involved and how business problems can be solved with machine learning. In particular, the course gives guidelines on how to formulate a business problem as a machine learning problem. This course is mainly aimed at a business audience. In the meantime, we are working on another machine learning course for a developer audience, and expect this course to be available next year.

Here is what some participants are saying about the course:

  • "I loved this course because of following reasons:
    a) It gave an overview of what machine learning is. b) It explained concept of machine learning in simple language c) The examples used were easy to relate and understand d) It also explained how ML can be used in Enterprise space." read the original post

  • " I am relatively new to the concepts of ML and I enjoyed this course as a good overview of ML." read the original post

Course Characteristics

• Starting from: November 14, 2016, 09:00 UTC. (What does this mean?)
• Duration: The course is open for 5 weeks
• Effort: 2-3 hours in total
• Course assignment: You can take the course assignment at any time whilst the course is open.
• Course closure: December 20, 2016, 09:00 UTC
• Course language: English
How is an openSAP course structured?

Course Content

Unit 1: Intelligent Applications Powered by Machine Learning
Unit 2: What Is Machine Learning?
Unit 3: From Business Problem to Machine Learning: A Recipe
Unit 4: Machine Learning in Enterprise Computing
Unit 5: Application Example: Natural Language Processing
Unit 6: Application Example: Computer Vision
Unit 7: Key Takeaways

Target Audience

• Solution managers
• Executive managers

Lernmaterial


  • Course

  • I Like, I Wish:

    We Love Your Feedback … And Want More

Für diesen Kurs einschreiben


Es gibt keine formellen Vorbedingungen oder Einschränkungen für die Teilnahme an diesem Kurs. Der Kurs ist frei, kostenlos und zugänglich für alle. Sie benötigen lediglich ein Nutzerkonto auf openSAP und schon können Sie den Kurs belegen!

Jetzt einschreiben

Dieser Kurs wurde vom 14. November 2016 bis 20. Dezember 2016 gehalten.

19963 Teilnehmer eingeschrieben.

Bewertungen


Der Kurs wurde mit durchschnittlich 4.24 Sternen bei 2764 abgegebenen Stimmen bewertet.

Anforderungen für Leistungsnachweise


  • Das Zeugnis erhält, wer in der Summe aller benoteten Aufgaben mehr als 50% der Höchstpunktzahl erreicht hat.
  • Die Teilnahmebestätigung erhält, wer auf zumindest 50% der Kursunterlagen zugegriffen hat.

Mehr Informationen finden Sie in den Richtlinien für Leistungsnachweise.

Dieser Kurs wird angeboten von


Daniel Dahlmeier

Dr. Daniel Dahlmeier is a development manager at the SAP Innovation Center Network and head of Machine Learning for Sales and Service at SAP. Daniel leads teams building machine learning services for SAP’s Customer Engagement and Commerce applications.

Before joining SAP, Daniel was doing research in natural language processing at the National University of Singapore. He enjoys building state-of-the-art technology to solve real-world problems.

Markus Noga

Dr. Markus Noga is head of the Machine Learning team at SAP. His vision is to make enterprise applications intelligent. Markus leads teams that are building SAP Leonardo Machine Learning applications and bringing SAP Leonardo Machine Learning services to SAP Cloud Platform. These teams are based in Germany, Israel, Singapore, and the United States, and form part of the SAP Innovation Center Network.

Markus previously served SAP as VP for New Business & Portfolio, where he drove the launch of SAP HANA Enterprise Cloud and the continuous renewal of SAP’s global R&D portfolio. He also previously worked as a director in the Corporate Strategy Group.

Helpdesk

Ihre Anfrage wurde an unser Support Team geschickt. Wir werden uns schnellstmöglich bei Ihnen melden.

Danke für Ihre Anfrage!

Leider hat hier etwas nicht geklappt.

Zurück