Join this free online course to learn about how machine learning can be applied to solve business problems. After taking this course, participants should be aware of recent advances in machine learning, understand the basic concepts involved and how business problems can be solved with machine learning. The course gives guidelines on how to formulate a business problem as a machine learning problem. Video subtitles for this course are available in Spanish, Portuguese, German, French, and English. This course belongs to the [Digital Transformation track][1]. [1]: https://open.sap.com/dtc
Selbststudium
Kurssprache: English

Kursinformationen

Course Summary

Machine learning enables computers to learn from large amounts of data without being explicitly programmed to do so. We can already see how machine learning gives rise to new intelligent applications, from self-driving cars to intelligent assistants on our smartphones.

Increasingly, businesses recognize the importance of using machine learning to transform their data assets into business value. However, many companies are unsure how machine learning can be applied to solve problems in an enterprise context. As the world’s most relevant enterprise data is part of SAP’s system and business network, SAP aspires to make all its enterprise solutions intelligent and help customers to leverage their data.

The objective of this course is to help business decision makers understand the significance of machine learning for enterprise computing. After taking this course, participants should be aware of recent advances in machine learning, have an understanding of the basic concepts involved and how business problems can be solved with machine learning. In particular, the course gives guidelines on how to formulate a business problem as a machine learning problem. This course is mainly aimed at a business audience. In the meantime, we are working on another machine learning course for a developer audience, and expect this course to be available next year.

Video subtitles for this course are available in Spanish, Portuguese, German, French, and English.

Course Characteristics

  • Starting from: November 21, 2017, 09:00 UTC. (What does this mean?)
  • Duration: The course is open for 4 weeks
  • Effort: 2-3 hours in total
  • Course assignment: You can take the course assignment at any time whilst the course is open.
  • Course closure: December 20, 2017, 09:00 UTC
  • Course language: English, with video subtitles available in Spanish, Portuguese, German, and French.
  • How is an openSAP course structured?

Course Content

Unit 1: Intelligent Applications Powered by Machine Learning
Unit 2: What Is Machine Learning?
Unit 3: From Business Problem to Machine Learning: A Recipe
Unit 4: Machine Learning in Enterprise Computing
Unit 5: Application Example: Natural Language Processing
Unit 6: Application Example: Computer Vision
Unit 7: Key Takeaways

Target Audience

  • Solution managers
  • Executive managers

Previous Version of This Course:

Enterprise Machine Learning in a Nutshell (November 14 through December 20, 2016)

Lernmaterial

  • Course

  • I Like, I Wish:

    We Love Your Feedback … And Want More

Diesen Kurs reaktivieren

Diesen Kurs können Sie reaktivieren und so die Möglichkeit erhalten, sich noch für ein Zeugnis zu qualifizieren. Weitere Informationen finden Sie hier — oder buchen Sie jetzt!

Für diesen Kurs einschreiben

Der Kurs ist kostenlos. Legen Sie sich einfach ein Benutzerkonto auf openSAP an und nehmen Sie am Kurs teil!
Jetzt einschreiben

Dieser Kurs wurde vom 21. November 2017 bis 20. Dezember 2017 gehalten.

Am ersten Tag dieses Kurses waren 3397 Teilnehmer eingeschrieben.

Bis zur Abschlussarbeit hat sich diese Zahl auf 8111 erhöht.

18156 Teilnehmer eingeschrieben.

Anforderungen für Leistungsnachweise

  • Das Zeugnis erhält, wer in der Summe aller benoteten Aufgaben mehr als 50% der Höchstpunktzahl erreicht hat.
  • Die Teilnahmebestätigung erhält, wer auf zumindest 50% der Kursunterlagen zugegriffen hat.

Mehr Informationen finden Sie in den Richtlinien für Leistungsnachweise.

Dieser Kurs wird angeboten von

Daniel Dahlmeier

Dr. Daniel Dahlmeier is a development manager at the SAP Innovation Center Network and head of Machine Learning for Sales and Service at SAP. Daniel leads teams building machine learning services for SAP’s Customer Engagement and Commerce applications.

Before joining SAP, Daniel was doing research in natural language processing at the National University of Singapore. He enjoys building state-of-the-art technology to solve real-world problems.

Markus Noga

Dr. Markus Noga is head of SAP Leonardo Machine Learning, where he leads teams building machine learning, conversational AI, intelligent robotic process automation, and data intelligence capabilities for the SAP portfolio of products. ​

Prior to this, Markus was VP for New Business & Portfolio, where he drove the launch of SAP HANA Enterprise Cloud and the continuous renewal of SAP’s global R&D portfolio. He has also worked as a director in the Corporate Strategy Group. ​

Before joining SAP, Markus was a principal with management consultancy Booz & Company. He holds a PhD in Computer Science from University of Karlsruhe, where he focused on the optimization of document processing.

Ihre Anfrage wurde an unser Support Team geschickt. Wir werden uns schnellstmöglich bei Ihnen melden.

Danke für Ihre Anfrage!

Leider hat hier etwas nicht geklappt.

Zurück